Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Life Sci Alliance ; 5(4)2022 04.
Article in English | MEDLINE | ID: covidwho-1637974

ABSTRACT

Advanced age is a key predictor of severe COVID-19. To gain insight into this relationship, we used the rhesus macaque model of SARS-CoV-2 infection. Eight older and eight younger macaques were inoculated with SARS-CoV-2. Animals were evaluated using viral RNA quantification, clinical observations, thoracic radiographs, single-cell transcriptomics, multiparameter flow cytometry, multiplex immunohistochemistry, cytokine detection, and lipidomics analysis at predefined time points in various tissues. Differences in clinical signs, pulmonary infiltrates, and virus replication were limited. Transcriptional signatures of inflammation-associated genes in bronchoalveolar lavage fluid at 3 dpi revealed efficient mounting of innate immune defenses in both cohorts. However, age-specific divergence of immune responses emerged during the post-acute phase. Older animals exhibited sustained local inflammatory innate responses, whereas local effector T-cell responses were induced earlier in the younger animals. Circulating lipid mediator and cytokine levels highlighted increased repair-associated signals in the younger animals, and persistent pro-inflammatory responses in the older animals. In summary, despite similar disease outcomes, multi-omics profiling suggests that age may delay or impair antiviral cellular immune responses and delay efficient return to immune homeostasis.


Subject(s)
Aging/immunology , COVID-19/immunology , COVID-19/veterinary , SARS-CoV-2/immunology , Acute Disease , Animals , Antibody Formation/immunology , Bronchoalveolar Lavage Fluid , COVID-19/complications , COVID-19/genetics , Cytokines/blood , Gene Expression Regulation , Gene Regulatory Networks , Genomics , Immunity, Cellular/genetics , Immunomodulation , Inflammation/complications , Inflammation/pathology , Lung/immunology , Lung/pathology , Lung/virology , Lymphoid Tissue/pathology , Macaca mulatta/immunology , Macaca mulatta/virology , Models, Biological , Single-Cell Analysis , T-Lymphocytes/immunology , Transcription, Genetic
2.
Viruses ; 13(12)2021 12 14.
Article in English | MEDLINE | ID: covidwho-1572667

ABSTRACT

Pre-existing comorbidities such as obesity or metabolic diseases can adversely affect the clinical outcome of COVID-19. Chronic metabolic disorders are globally on the rise and often a consequence of an unhealthy diet, referred to as a Western Diet. For the first time in the Syrian hamster model, we demonstrate the detrimental impact of a continuous high-fat high-sugar diet on COVID-19 outcome. We observed increased weight loss and lung pathology, such as exudate, vasculitis, hemorrhage, fibrin, and edema, delayed viral clearance and functional lung recovery, and prolonged viral shedding. This was accompanied by an altered, but not significantly different, systemic IL-10 and IL-6 profile, as well as a dysregulated serum lipid response dominated by polyunsaturated fatty acid-containing phosphatidylethanolamine, partially recapitulating cytokine and lipid responses associated with severe human COVID-19. Our data support the hamster model for testing restrictive or targeted diets and immunomodulatory therapies to mediate the adverse effects of metabolic disease on COVID-19.


Subject(s)
COVID-19 , Diet, High-Fat/adverse effects , Dietary Carbohydrates/adverse effects , Lipid Metabolism , Severity of Illness Index , Animals , COVID-19/pathology , Cricetinae , Cytokines/blood , Disease Models, Animal , Edema , Fibrin , Hemorrhage , Humans , Interleukin-10 , Interleukin-6 , Lipidomics , Lipids/blood , Liver/pathology , Lung/pathology , Male , Mesocricetus , Obesity , SARS-CoV-2 , Sugars , Vasculitis/pathology , Virus Shedding
4.
Sci Transl Med ; 13(607)2021 08 18.
Article in English | MEDLINE | ID: covidwho-1329033

ABSTRACT

ChAdOx1 nCoV-19/AZD1222 is an approved adenovirus-based vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) currently being deployed globally. Previous studies in rhesus macaques revealed that intramuscular vaccination with ChAdOx1 nCoV-19/AZD1222 provided protection against pneumonia but did not reduce shedding of SARS-CoV-2 from the upper respiratory tract. Here, we investigated whether intranasally administered ChAdOx1 nCoV-19 reduces detection of virus in nasal swabs after challenging vaccinated macaques and hamsters with SARS-CoV-2 carrying a D614G mutation in the spike protein. Viral loads in swabs obtained from intranasally vaccinated hamsters were decreased compared to control hamsters, and no viral RNA or infectious virus was found in lung tissue after a direct challenge or after direct contact with infected hamsters. Intranasal vaccination of rhesus macaques resulted in reduced virus concentrations in nasal swabs and a reduction in viral loads in bronchoalveolar lavage and lower respiratory tract tissue. Intranasal vaccination with ChAdOx1 nCoV-19/AZD1222 reduced virus concentrations in nasal swabs in two different SARS-CoV-2 animal models, warranting further investigation as a potential vaccination route for COVID-19 vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Cricetinae , Macaca mulatta , Vaccination , Virus Shedding
5.
NPJ Vaccines ; 6(1): 32, 2021 Mar 02.
Article in English | MEDLINE | ID: covidwho-1146187

ABSTRACT

Lassa virus (LASV) infects hundreds of thousands of individuals each year, highlighting the need for the accelerated development of preventive, diagnostic, and therapeutic interventions. To date, no vaccine has been licensed for LASV. ChAdOx1-Lassa-GPC is a chimpanzee adenovirus-vectored vaccine encoding the Josiah strain LASV glycoprotein precursor (GPC) gene. In the following study, we show that ChAdOx1-Lassa-GPC is immunogenic, inducing robust T-cell and antibody responses in mice. Furthermore, a single dose of ChAdOx1-Lassa-GPC fully protects Hartley guinea pigs against morbidity and mortality following lethal challenge with a guinea pig-adapted LASV (strain Josiah). By contrast, control vaccinated animals reached euthanasia criteria 10-12 days after infection. Limited amounts of LASV RNA were detected in the tissues of vaccinated animals. Viable LASV was detected in only one animal receiving a single dose of the vaccine. A prime-boost regimen of ChAdOx1-Lassa-GPC in guinea pigs significantly increased antigen-specific antibody titers and cleared viable LASV from the tissues. These data support further development of ChAdOx1-Lassa-GPC and testing in non-human primate models of infection.

7.
PLoS Pathog ; 17(1): e1009195, 2021 01.
Article in English | MEDLINE | ID: covidwho-1034958

ABSTRACT

SARS-CoV-2 emerged in late 2019 and resulted in the ongoing COVID-19 pandemic. Several animal models have been rapidly developed that recapitulate the asymptomatic to moderate disease spectrum. Now, there is a direct need for additional small animal models to study the pathogenesis of severe COVID-19 and for fast-tracked medical countermeasure development. Here, we show that transgenic mice expressing the human SARS-CoV-2 receptor (angiotensin-converting enzyme 2 [hACE2]) under a cytokeratin 18 promoter (K18) are susceptible to SARS-CoV-2 and that infection resulted in a dose-dependent lethal disease course. After inoculation with either 104 TCID50 or 105 TCID50, the SARS-CoV-2 infection resulted in rapid weight loss in both groups and uniform lethality in the 105 TCID50 group. High levels of viral RNA shedding were observed from the upper and lower respiratory tract and intermittent shedding was observed from the intestinal tract. Inoculation with SARS-CoV-2 resulted in upper and lower respiratory tract infection with high infectious virus titers in nasal turbinates, trachea and lungs. The observed interstitial pneumonia and pulmonary pathology, with SARS-CoV-2 replication evident in pneumocytes, were similar to that reported in severe cases of COVID-19. SARS-CoV-2 infection resulted in macrophage and lymphocyte infiltration in the lungs and upregulation of Th1 and proinflammatory cytokines/chemokines. Extrapulmonary replication of SARS-CoV-2 was observed in the cerebral cortex and hippocampus of several animals at 7 DPI but not at 3 DPI. The rapid inflammatory response and observed pathology bears resemblance to COVID-19. Additionally, we demonstrate that a mild disease course can be simulated by low dose infection with 102 TCID50 SARS-CoV-2, resulting in minimal clinical manifestation and near uniform survival. Taken together, these data support future application of this model to studies of pathogenesis and medical countermeasure development.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , COVID-19/pathology , Keratin-18/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/immunology , COVID-19/virology , Disease Models, Animal , Female , Humans , Keratin-18/immunology , Lung/immunology , Lung/pathology , Lymphocytes/immunology , Macrophages/immunology , Male , Mice , Mice, Transgenic , Promoter Regions, Genetic , SARS-CoV-2/physiology , Trachea/immunology , Trachea/virology
8.
Nature ; 586(7830): 578-582, 2020 10.
Article in English | MEDLINE | ID: covidwho-691215

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 20191,2 and is responsible for the coronavirus disease 2019 (COVID-19) pandemic3. Vaccines are an essential countermeasure and are urgently needed to control the pandemic4. Here we show that the adenovirus-vector-based vaccine ChAdOx1 nCoV-19, which encodes the spike protein of SARS-CoV-2, is immunogenic in mice and elicites a robust humoral and cell-mediated response. This response was predominantly mediated by type-1 T helper cells, as demonstrated by the profiling of the IgG subclass and the expression of cytokines. Vaccination with ChAdOx1 nCoV-19 (using either a prime-only or a prime-boost regimen) induced a balanced humoral and cellular immune response of type-1 and type-2 T helper cells in rhesus macaques. We observed a significantly reduced viral load in the bronchoalveolar lavage fluid and lower respiratory tract tissue of vaccinated rhesus macaques that were challenged with SARS-CoV-2 compared with control animals, and no pneumonia was observed in vaccinated SARS-CoV-2-infected animals. However, there was no difference in nasal shedding between vaccinated and control SARS-CoV-2-infected macaques. Notably, we found no evidence of immune-enhanced disease after viral challenge in vaccinated SARS-CoV-2-infected animals. The safety, immunogenicity and efficacy profiles of ChAdOx1 nCoV-19 against symptomatic PCR-positive COVID-19 disease will now be assessed in randomized controlled clinical trials in humans.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Disease Models, Animal , Macaca mulatta , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , Adenoviridae/genetics , Animals , Bronchoalveolar Lavage Fluid , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/genetics , Coronavirus Infections/virology , Cytokines/immunology , Female , Immunity, Cellular , Immunity, Humoral , Immunoglobulin G/immunology , Lung/immunology , Lung/pathology , Lung/virology , Macaca mulatta/immunology , Macaca mulatta/virology , Male , Mice , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Th1 Cells/immunology , Vaccination , Viral Load , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL